Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Western North America is the archetypical Cordilleran orogenic system that preserves a Mesozoic to Cenozoic record of oceanic Farallon plate subduction-related processes. After prolonged Late Jurassic through mid-Cretaceous normal-angle Farallon plate subduction that produced the western North American batholith belt and retroarc fold-thrust belt, a period of low-angle, flat-slab subduction during Late Cretaceous−Paleogene time caused upper plate deformation to migrate eastward in the form of the Laramide basement-involved uplifts, which partitioned the original regional foreland basin. Major questions persist about the mechanism and timing of flat-slab subduction, the trajectory of the flat-slab, inter-plate coupling mechanism(s), and the upper-plate deformational response to such processes. Critical for testing various flat-slab hypotheses are the timing, rate, and distribution of exhumation experienced by the Laramide uplifts as recorded by low-temperature thermochronology. In this contribution, we address the timing of regional exhumation of the Laramide uplifts by combining apatite fission-track (AFT) and (U-Th-Sm)/He (AHe) data from 29 new samples with 564 previously published AFT, AHe, and zircon (U-Th)/He ages from Laramide structures in Arizona, Utah, Wyoming, Colorado, Montana, and South Dakota, USA. We integrate our results with existing geological constraints and with new regional cross sections to reconstruct the spatial and temporal history of exhumation driven by Laramide deformation from the mid-Cretaceous to Paleogene. Our analysis suggests a two-stage exhumation of the Laramide province, with an early phase of localized exhumation occurring at ca. 100−80 Ma in Wyoming and Montana, followed by a more regional period of exhumation at ca. 70−50 Ma. Generally, the onset of enhanced exhumation occurs earlier in the northern Laramide province (ca. 90 Ma) and later in the southern Laramide province (ca. 80 Ma). Thermal history models of selected samples along regional cross sections through Utah−Arizona−New Mexico and Wyoming−South Dakota show that exhumation occurred contemporaneously with deformation, implying that Laramide basement block exhumation is coupled with regional deformation. These results have implications for testing proposed migration pathway models of Farallon flat-slab and for how upper-plate deformation is expressed in flat-slab subduction zones in general.more » « lessFree, publicly-accessible full text available February 18, 2026
-
The Central Andean and Himalayan orogenic belts provide an ideal natural experiment to test the potential role of climate in controlling orogeny. Approximately equal in age and along-strike length, both orogenic wedges are forming in plate-marginal convergent tectonic settings: The Andes in a retroarc setting and the Himalaya in a collisional setting against the Tibetan backstop. The Central Andes orogenic wedge is volumetrically and aerially nearly two times larger than the Himalayan orogenic wedge, despite the Himalaya having accommodated two to three times more tectonic shortening. The Himalaya exports at least four times more sediment owing to much greater erosion rates as signified by widespread Cenozoic metamorphic rocks and very young (<10 Ma) low-temperature thermochronologic ages. The Central Andes are thermochronologically old (mostly >20 Ma), have no exposures of Cenozoic metamorphic rocks, and are mantled by volcanic and sedimentary rocks, attesting to shallow, slow erosion. We conclude that greater intensity of the Indian Monsoon relative to the South American Monsoon since Oligocene time accounts for the differences in orogen size and characteristics. When viewed as an orogenic wedge that has developed largely after formation of the Tibetan orogenic collage, the Himalaya is neither the largest nor hottest among Earth’s orogens.more » « less
-
The Himalaya is known for dramatically rugged landscapes including the highest mountains in the world. However, there is a limited understanding of the timing of attainment of high elevation and relief formation, especially in the Nepalese Himalaya. Anomalous high-elevation low-relief (HELR) surfaces, which exhibit geomorphic antiquity and are possibly remnants of formerly widespread high-elevation paleosurfaces, provide a unique opportunity to assess the attainment of regional high elevation in the Himalaya. The Bhumichula plateau is one such HELR surface (4300−4800 m) in the western Nepalese Himalayan fold-thrust belt. The Bhumichula plateau is situated in the Dadeldhura klippe (also called the Karnali klippe), an outlier of Greater Himalayan Sequence high-grade metasedimentary/igneous rocks surrounded by structurally underlying Lesser Himalayan Sequence low-grade metasedimentary rocks. We assess the origin of the Bhumichula plateau by combining regional geological relationships and zircon and apatite (U-Th-Sm)/He and apatite fission track thermochronologic ages. The HELR surface truncates pervasive west-southwestward dipping foliations, indicating that it post-dates tilting of rocks in the hanging wall of the Main Central thrust above the Lesser Himalayan duplex. This suggests that the surface originated at high elevation by erosional beveling of thickened, uplifted crust. Exhumation through the ∼180−60 °C thermal window occurred during middle Miocene for samples on the plateau and between middle and late Miocene for rocks along the Tila River, which bounds the north flank of the Bhumichula plateau. Cooling ages along the Tila River are consistent with erosional exhumation generated by early Miocene emplacement of the Main Central (Dadeldhura) thrust sheet, middle Miocene Ramgarh thrust emplacement, and late Miocene growth of the Lesser Himalayan duplex. The most recent middle-late Miocene exhumation took place as the Tila River and its northward flowing tributaries incised upstream, such that the Bhumichula plateau is a remnant of a more extensive HELR paleolandscape. Alpine glaciation lowered relief on the Bhumichula surface, and surface preservation may owe to its relatively durable lithology, gentle structural relief, and elevation range that is above the rainier Lesser Himalaya.more » « less
-
Abstract The modern topography within the Laramide region consists of high‐relief ranges and high‐elevation low‐relief (HELR) surfaces separated by intraforeland basins. However, the timing and development of this topography within the type‐locality of the Wyoming Laramide province is poorly understood. Previous models suggest that the modern topography is a young feature that was acquired after Laramide tectonism, post‐Laramide burial, and basin evacuation; however, evidence of such a progression is sparse. We present low‐temperature‐thermochronological data from two Laramide uplifts in Wyoming, the Wind River and Bighorn Ranges, which document an early record of Laramide exhumation, subsequent reheating, and significant cooling after 10 Ma. Our results indicate that the Laramide ranges were buried by post‐Laramide Cenozoic basin fill, creating a low‐relief topography by the early Miocene that was reduced due to late Miocene regional incision and basin evacuation. We suggest that HELR surfaces experienced further relief reduction from Pleistocene glaciation.more » « less
An official website of the United States government

Full Text Available